QUES 03

In Figure, a body A of mass m slides on plane inclined at angle θ_1 to the horizontal and μ_1 is the coefficient of friction between A and the plane. A is connected by a light string passing over a frictionless pulley to another body B, also of mass m, sliding on a frictionless plane inclined at angle θ_2 to the horizontal. Which of the following statements are true?

- a. A will never move up the plane.
- b. A will just start moving up the plane when $\mu = \frac{\sin\theta_2 \sin\theta_1}{\cos\theta_1}$
- c. For A to move up the plane, $heta_2$ must always be greater than $heta_1$
- d. B will always slide down with constant speed.

Sol. In question, it is mention that plane below block A has μ co-efficient of friction also block B lying on a frictionless surface.

Let's consider two cases

Case 1: When A just start i.e. $f = \mu N_1 = \mu mg \cos \theta_1$

m g sin θ_1 + f = mg sin θ_2

Body A moves up and B down the plane

m g sin θ_1 + μ mg cos θ_1 = mg sin θ_2

mg will cancel out

 $\sin \theta_1 + \mu \cos \theta_1 = \sin \theta_2$ or $\mu \cos \theta_1 = \sin \theta_2$ - $\sin \theta_1$

Or $\mu = \frac{\sin \theta_2 - \sin \theta_1}{\cos \theta_1}$ so option (b) is correct.

Case 2: When A moves upward and B downward

 \Rightarrow m g sin θ_2 -m g sin $\theta_1 > 0$

$$\Rightarrow \sin \theta_2 - \sin \theta_1 > 0$$

$$\Rightarrow \sin \theta_2 > \sin \theta_1$$

Or $\theta_2 > \theta_1$ from this we can say option (a) is wrong and option (c) is correct.

Now if B moves upward and A downward then

 \Rightarrow m g sin $heta_1$ - f > mg sin $heta_2$

 \Rightarrow m g sin θ_1 - μ m g cos θ_1 > mg sin θ_2

 $\Rightarrow \sin \theta_1 - \mu \cos \theta_1 > \sin \theta_2$

$$\Rightarrow \sin \theta_1 - \sin \theta_2 > \mu \cos \theta_1$$

So from here, we can say that as $heta_1$ increases $\sin heta_1$ also increases but $\cos heta_1$ decreases also

sum of θ_1 and θ_2 is 90° so $\theta_1 > \theta_2$ and $\sin \theta_1 > \sin \theta_2 > \mu \cos \theta_1$ also right.

Hence from here body B can move up that means option (d) is wrong.